Will that work? It seems unlikely, but, in the meantime, enjoy the view from the mountains!

**Putting a Spin on Tendon Healing**
Enhancing tissue healing with “biologics” continues to impress.

Forslund and Aspenberg (Am J Sports Med. 2003; 31:555-559) used a single injection of cartilage-derived morphogenetic protein-2 (CDMP-2) to speed up the healing of transected tendo-Achilles in rabbits.

The tendo-Achilles on one side of 40 rabbits was divided and not sutured. Two hours after tendon division, 10 µg of the morphogenetic protein was injected locally in 10 rabbits. Another group of 10 rabbits, acting as controls, had an acetate buffer injected. They were sacrificed for study 8 days later. A second similar group of 12 rabbits (6 CDMP-2 and 6 controls), treated in the same way, were sacrificed at 14 days. The third CDMP-2 treated group was sacrificed at 8 weeks.

Strength testing and callus volume were used for comparison. At 14 days, failure load and stiffness of the CDMP-2 treated tendons was 35% greater than the average control. Even at 56 days, no ossification was found at the injection site.

**What’s in a Name?**
A lot—if it is fibromyalgia.

Does fibromyalgia exist or is it just a pain with a name? It has been described as a chronic, disabling condition with a worldwide distribution. In the United States, 7.5% of patients have fibromyalgia. In Canada, just over 2% of the population believe they suffer from fibromyalgia. These patients cost $250 million in direct health and $200 million in private insurance expenditures.

White and Thomson (J Rheumatol. 2003; 30:1835-1840) studied the prevalence of fibromyalgia in an Amish community. The Amish are a culturally distinct society that has minimal contact with the population around them. In the 242 Amish adults studied, an overall 7.3% prevalence of fibromyalgia (age and sex adjusted) was found. A figure greater than in a control group.

In the same journal, in an editorial, George Erlich of the University of Pennsylvania, sums up his opinion: “Pain is real; fibromyalgia isn’t” (J Rheumatol. 2003; 30:1666-1667). Erlich derides those who use the term “fibromyalgia” for the aches and pains normal to us all. He claims that the Amish, who had chronic pain, were never diagnosed as having fibromyalgia until the investigators gave them a label. In the context of the Amish culture, the diagnosis was meaningless.

In society at large, once the diagnosis has been made by a doctor, support and advocacy groups with tort lawyers turn common, chronic pain into a remunerative industry. Fibromyalgia as a diagnosis is common in urban society (the gesellschaft of Toennies) and uncommon in rural communities. No objective findings are present in fibromyalgia and not even one acceptable definition exists.

Erlich opines that treatments cannot work for a non-disease. He would have us avoid turning “diseases” into commodities.

**Baring the Facts—On Metal Bearings**
It has been known for years that metal hip implants lose ions from their surfaces, especially the bearing surfaces. It has also been known that the ion leak increases if a component is loose and if it is made of cobalt-chrome steel. Granchi et al (J Bone Joint Surg Br. 2003; 85:758-764) studied whether well-fixed implants were a source of immunological changes, as had been observed with loose implants.

Blood samples were collected from 39 healthy donors, 22 patients with osteoarthritis before total hip replacement (THR), and 41 patients with well-fixed THRs (15 metal-on-metal, 13 metal-on-polyethylene, and 13 ceramic-on-ceramic bearings).

Even before THR, patients with osteoarthritis had a decrease in blood leukocytes and myeloid cells compared with healthy donors. The pre-THR patients also had a prevalence of type-1 T lymphocytes.

Patients with metal-on-metal or metal-on-polyethylene bearings showed a significant decrease in the number of T lymphocytes and a significant increase in serum levels of cobalt and chromium. However, no correlation was observed with the immunological changes. In patients with ceramic-on-ceramic bearings, lymphocyte and leukocyte subgroups were not significantly changed.

Cobalt and chromium are needed for normal health. Cobalt is an essential micronutrient, and chromium, as a trace element, has a role in glucose metabolism. The number of ions needed for these functions is not clearly established but when more ions are present than the “trace” that is needed, we should be concerned.