Optical coherence tomography angiography uses motion contrast to detect flow from the optical coherence tomography (OCT) data; thus, flow is defined as the difference in signal between 2 sequential B-scans. Stationary tissue will show no variation between consecutive B-scans; however, blood flow will result in disparities between B-scans, resulting in a map of blood flow that appears as red pixels on the structural B-scan. A 3-dimensional (3D) angiogram is then created via evaluation of multiple motion contrast B-scans. Tandem viewing of OCT angiograms and B-scans allows for rapid identification and interpretation of retinal and choroidal pathologies (Figures 1-1 through 1-3).

Figure 1-1. Rapid acquisition of 2 sequential B-scans.

Figure 1-2. B-scan with flow overlay. Red pixelation represents blood flow within retina and choroid.

Figure 1-3. Angiogram.