Next, examine the periphery using fluorescein and cobalt filter. After fit as necessary until the resulting bullseye pattern is attained: apical bearing, paracentral clearance, midperipheral bearing, and peripheral clearance.

The lens must settle on the eye for 10 to 20 minutes, after which time you should reassess to ensure no significant change in the fitting with initial wear. Contact lens over-refraction and patient education follow. When ordering, order median to high-Dk material.

Upon dispensing the lenses, evaluate corneal lenses after 20 minutes. Scleral designs require more time, typically 45 minutes. Over-refraction and fluorescein pattern evaluation guide any adjustments. Educate the patient on proper wear time and lens care plan. For new patients, gradually increase wear time. Have the patient return in 2 to 4 weeks for an evaluation of vision and lens fitting.

When changing the diameter of the lens, it is important to remember that changing lens shape alters the refractive correction. To maintain the fitting relationship, for every 0.5-mm increase in lens diameter, you must flatten the base curve by 0.25 D and adjust the dioptric power (add plus). Therefore, for every 0.5 mm you decrease the lens diameter, you must steepen the base curve by 0.25 D and adjust the dioptric power (add minus) if you want to maintain the fitting relationship.

GAS-PERMEABLE SPECIALTY LENSES

With few exceptions, fitting of specialty lenses requires the use of a diagnostic fitting set. Contact your CLMA member laboratory for fitting set information. There are numerous designs, which are listed by manufacturer in Table 12-6. Case examples will illustrate the use of these lenses.

Case 1: Flat Steep Option

The “flat-steep option” and the quadrant-specific technology offered by Lens Dynamics Inc (Wheat Ridge, CO) are excellent options for patients with pellucid marginal degeneration (PMD). This works well with PMD because of the larger area of inferior steepening. These 11.2-mm standard OAD with 9.4-mm OZD lenses may bear superiorly and, therefore, rock along the horizontal meridian. A better fitting relationship can be obtained by flattening the lens superiorly and steepening the lens inferiorly to decrease edge lift. These are ordered in step increments based on the amount of edge lift or bearing present. Figure 12-12A illustrates a patient with PMD and 10 D of curvature difference from superior to inferior cornea. Therefore, a large diameter lens design was chosen with a BC of 8.23 and the periphery ordered at 4 steps flat @ 090 (superior) and 3 steps steep @ 270 (inferior). Figure 12-12B shows this lens on the eye, and the patient’s vision is 20/20.